Joseph P. Messina
Stephen J. Walsh
Abstract
Global change research includes an extensive body of literature covering population-environment interactions focusing on the central issues of migration and demography, environmental site and situation, and socioeconomic structures addressed within a spatially-explicit but temporally dependent form. Quite often this is simply because neither the data nor the modeling methodology combine well to effectively address uncertainty and spatially defined time-series data within a nonlinear context. In this research, a cellular automaton model is proposed as an effective framework for the predictive modeling of landuse/landcover change (LULCC) associated with the spatial pattern and rates of deforestation and agricultural extensification in the Ecuadorian Amazon. The model employs user-defined rules based upon spatially explicit probabilities of LULCC derived from remotely sensed time-series data and both biophysical and socioeconomic regional characteristics to produce an output image of the "anthropomorphized" landscape over time and space.
Keywords
Cellular automata, landscape dynamics, Amazon, deforestation, agricultural extensification, tropical forests, remote sensing, landscape dynamics
Introduction
Environmental modeling often takes the approach that events are static in time and space. The more complex models, attempting to define process over time (e.g. GAP, GCM), rarely if ever include human activity as an integrated process. These human effects are difficult to model and do not follow the mechanistic forms favored by modelers. Further, attempts at mechanistic modeling of human activity have fallen from favor in the scientific literature. The process of land degradation, while in many cases visible to the eye and found throughout human history, has not been modeled to any significant degree (Blaikie and Brookfield, 1987). Redclift (1994) cites three primary flaws in the current paradigm used for the evaluation of LULCC processes: biological determinism, regionalization (fitting society into tight discrete social units for measure), and avoidance of time and space in the modeling process. In the context of the Ecuadorian Amazon, it is readily apparent that individual, social, and structural processes occur at different temporal and spatial scales and do so through feedbacks and thresholds within and across thematic, spatial, and temporal domains. Individuals can choose incorrectly, they may make decisions based upon the decisions of their neighbors or other units of social organization, or decide to satisfy the whims of a society far removed from their own. There are in fact many possible routes that an individual might take in making land use decisions. However, those decisions cluster around a common core. By defining the core decisions and modeling stochastically, it is possible to predict the majority of the decisions made by the regional community and their expression upon the landscape. Also, time-lags in landuse patterns associated with agricultural commodity prices or climatic trends and relationships to local and regional infrastructure affect LULCC decisions and spatio-temporal patterns expressed at the household level, the dominant proximate cause of deforestation in much of the Amazon basin. Within the Ecuadorian Amazon and much of Latin America, the nature of deforestation and farm creation may prove to be consistent enough to permit the development of deterministic models characterizing one or more of the landscape constituents. The changing temporal and spatial location/process of tropical development provides insight into the activities that currently encourage land clearing. In this way, spatial patterns point to a set of factors that can explain recent changes in regional rates of landuse/landcover change and provide focused spatial constructions suitable for modeling. While the output from the Oriente development model characterizes both the pattern and rate of regional deforestation, issues regarding comparative pattern analysis need to be addressed in complex or adaptive system terms.
Background
The research study site in the northeastern Ecuadorian Amazon, known regionally as the Northern Oriente, is significant from a social, biophysical, and geographical basis. Settlers in the Napo and Sucumbios provinces are generally poor in-migrants settling on predefined 50 hectare plots, clearing primary forest to grow subsistence crops, coffee, and later, pasture for cattle (Whitaker 1990). The focus on the Ecuadorian Amazon is significant for environmental and socioeconomic reasons. The western Amazon region, bordering the Andes and lying at the headwaters of the Amazon River basin, possesses several major centers of endemism (Hiroaka and Yamamoto 1980). Despite its global biodiversity and carbon sequestration significance, agricultural settlement and concurrent deforestation threaten the region. The specific site selected for modeling is an intensive study area (ISA) of approximately 90,000 ha located to the northeast of the regional capital and largest central place, Lago Agrio. This area was selected for its rapid development and complex landscape variability (spatial pattern and compositional changes in landuse/landcover). Furthermore, this site serves as an on-going field site for study of forest reserve remnants. The Northern Oriente is also unique in that much of the morphology remains undefined within the literature. Regional elements have been overlooked in the Ecuadorian Amazonian due in part to the region's inaccessibility and in part to the lack of total area with respect to the much more politically popular and economically dominant Brazil. A major advantage of the Oriente over Brazilian rainforests lies in the scale dependent homogeneity of the climate, land surface, and social organization. It is this very homogeneity that supports meso-scale landscape diversity modeling as presented here.
Cellular automata
Cellular automata (CA) were originally conceived by Ulam and von Neumann in the 1940s to provide a formal framework for investigating the behavior of complex, extended systems (von Neumann 1966). Cellular automata are dynamic, discrete space and time systems. A cellular automaton system consists of a regular grid of cells, each of which can be in one of a finite number of k possible states, updated synchronously in discrete time steps according to a local, identical interaction rule. The state of a cell is determined by the previous states of a surrounding neighborhood of cells (Wolfram 1984). The infinite or finite cellular array (grid) is n-dimensional, where n=1,2,3 is used. The identical rule contained in each cell is essentially a finite state machine, usually specified in the form of a transition function or growth rule that addresses every possible neighborhood configuration of states. The neighborhood of a cell consists of the surrounding (adjacent) cells. For 1-D (one-dimensional) CA models, a cell is connected to r local neighbors (cells) on either side, where r is a parameter referred to as the radius (e.g. each cell has 2r+1 neighbors, including itself). The increasing application of cellular automata in general phenomenological modeling is an important indicator of the developmental potential of CA. The ability of a system to grow and then alter its rate of growth and possibly reverse or "die" is a fundamental goal in biological or human system CA modeling. Ermentrout and Edelstein-Keshet (1993) performed CA applications in biological modeling. The systems modeled by Clarke et al. (1996, 1997) and the example presented here both attempt to follow biological patterns of development. The difficulty in modeling population-environment interactions has historically been the necessary dual simulation mode of model construction. Human systems are necessarily stochastic while many natural systems are adequately modeled deterministically. Combining the two methodologically polar components into an effective approximation of reality requires the use of alternative modeling techniques.
Database development
|
Model development
Random numbers
Growth rules
Road influenced growth, the most important driver of landscape alteration in the Oriente, encourages change cells to develop along the transportation network replicating the effects of increased accessibility. The likelihood of settlement and consequent deforestation along a road is high yet variable depending upon access to markets and settlement patterns. Road accessibility growth is currently modeled with another random number image, an adjustable search function, and an adjustable conditional statement. The model component outputs a "roadgrowth" image for visual validation. A corollary to road growth is river influenced growth. In many cases, the initial settlement push into a region is via river system transportation. As such, river growth is modeled using hydrographic information and the same routine as the road growth process. The physical element, slope, is iteratively applied as a categorized topographic relief variable. All the pixels at each step are analyzed with respect to the slope layer. This method seems unnecessarily repetitive, as the slope values themselves do not change, though the effect varies whereby slope constraints can and do change among growth rules. The Oriente model incorporates slope as a separate layer with an adjustable scalar function to modify the slope desirability over time as demand for land changes. In the final phases of model execution, excluded areas are removed, and the original urban extent image is added. It is inevitable that pixels will be incorrectly urbanized during the model run, as water areas and other types of features are not initially removed from consideration; therefore the excluded image is subtracted from the whole. Second, the original seed image is added back into the growth image to account for areas erroneously removed due to slope constraints and topographical data errors (Figure 3).
|
Self-Modification
Validation
| |||||||||||||||||||||||||||||||||||
Table 1. Total Area and Summary Correlations |
|
Discussion and conclusions
1. Portions of this paper were presented at the UCGIS 2000 Summer Assembly, Portland OR, June 23, 2000. See http://www.ucgis.org/oregon/papers/messina.htm.
Blaikie, P. and Brookfield, H., 1987. Land Degradation and Society. Methuen, London.
Clarke, K.C., L. Gaydos, S. Hoppen, 1997. A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area, Environment and Planning B 24: 247-261.
Clarke, K.C., S. Hoppen, L. Gaydos, 1996. Methods and Techniques for Rigorous Calibration of a Cellular Automaton Model of Urban Growth. Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico, January 21-25, 1996. Santa Barbara: National Center for Geographic Information and Analysis.
Ermentrout G. B. and L. Edelstein-Keshet, 1993. Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology 160:97-133.
Hiroaka, M, and S. Yamamoto. 1980. Agricultural Development in the Upper Amazon of Ecuador. Geographical Review 70{4}:423-446.
Messina, J.P., K.A. Crews-Meyer, and S.J. Walsh. 2000. Scale Dependent Pattern Metrics and Panel Data Analysis as Applied in a Multiphase Hybrid Landcover Classification Scheme. Proceedings of the 2000 ASPRS Conference.
Redclift, M. and Benton, T. (Editors), 1994. Social Theory and the Global Environment. Routledge, London, 271 pp.
von Neumann, J., 1966. Theory of Self-Reproducing Automata. Edited and completed by A.W. Burks. Illinois: University of Illinois Press.
Whitaker, M. D. 1990. The Human Factor and Agriculture. in Whitaker, M. D., and D. Colyer Eds. Agriculture and Economic Survival: The Role of Agriculture in Ecuador's Development. Westview Press Inc.
Wolfram, S., 1984. Cellular Automata as Models of Complexity. Nature 311:419-424.
0 comments:
Post a Comment